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Abstract 
 
Understanding water hammer is very important to the prevention of excessive pressure build-up in pipelines. Many researchers have 

studied this phenomenon, drawing effective solutions through the time- and frequency-domain approaches. For the purposes of enhanc-
ing the advantages of the frequency-domain approach and, thereby, rendering investigations of the dynamic characteristics of pipelines 
more effective, we propose partial fraction expansion of the transfer function between the unsteady flow source and a given section. We 
simulate the proposed approach using a vibration element inserted into a simple pipeline, deducing much useful physical information  
pertaining to pipeline design. We conclude that locating the resonance of the vibration element between the first and second resonances 
of the pipeline can mitigate the excessive pressure build-up attendant on the occurrence of water hammer. Our method of partial fraction 
expansion is expected to be useful and effective in analyses of unsteady flows in pipelines.  

 
Keywords: Design of pipeline; Water hammer; Frequency-domain analysis; Partial fraction expansion; Piston-type accumulator; Bladder-type accumulator  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

Water hammer occurs when rapid valve closure very sud-
denly blocks water flow in pipelines. A water hammer’s pres-
sure wave can cause major problems ranging from noise and 
vibration to pipe collapse. A thorough understanding of water 
hammer is indispensible to prediction, avoidance or control of 
potentially very damaging physical phenomena in pipelines. 

The governing equation of unsteady flow in pipelines is 
based on the continuity and momentum of the compressible 
fluid. The time-domain or frequency-domain approach is 
available for prediction of the pressure wave at a given section. 
The method of characteristics (MOC), one of the time-domain 
approaches, is most favored in that it is straightforward, accu-
rate and numerically efficient [1, 2]. However, with conven-
tional time-domain approaches, the analyzed results some-
times differ from the actual fluid transients. This discrepancy 
has been attributed to the fact that the conventional time-
domain methods ignore frequency-dependent factors prevail-
ing in actual systems such as friction, wave speed and dy-
namic characteristics of pipeline elements [3, 4]. The MOC, 
which uses the finite difference method for pipelines with 

these frequency-dependent factors, employs an iterative 
method to resolve these difficulties with a very small time step, 
resulting in a very time-consuming process. 

Generally an unsteady flow consists of the steady harmonics 
related to the dynamic characteristics of a pipeline. For this 
reason, the frequency-domain approach is more practical and 
efficient in investigations of the individual contributions of 
pipeline elements. It focuses directly on the dynamic behavior 
of pipeline flow under oscillatory conditions [5-7].  

The impulse response function (IRF) effectively describes 
the reaction of a pipeline when water hammer occurs [3, 4]. 
The IRF takes the form of the inverse Fourier transform (IFT) 
of the frequency response function (FRF) to obtain the system 
response. Unfortunately, with the IRF, the individual dynamic 
characteristics of pipeline elements, which include those of the 
inserted vibration element, cannot easily be identified, owing 
to the simple representation of the FRF. 

In order to compensate for this disadvantage of the IRF ap-
proach, we expand the system FRF into partial fraction terms 
with an individual pole and its amplification constant. By this 
approach, the pole variation due to a frequency-dependent 
element in the pipeline can easily be observed. Additionally, 
the sum of the IFT results of partially fractioned terms delivers 
the final time-domain solution of a pipeline’s unsteady flow. 
In the present study, we simulate the proposed approach using 
a simple pipeline incorporating an inserted vibration element. 
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Moreover, we employ a graphical solution to express the 
physical behavior of the pressure wave in the simple pipeline, 
thereby validating our method. 

 
2. Water hammer analysis in pipeline 

2.1 Problem definitions 

Fig. 1 shows the considered simple pipeline system, in 
which the fluid flow from a reservoir is suddenly blocked by a 
control valve. We could have installed in the pipeline a vibra-
tion element with mechanical impedance to mitigate the pres-
sure fluctuation. In fact, we introduce a mathematical model 
of the vibration element as a piston-type or bladder-type ac-
cumulator. However, since this paper is dedicated to a 
mathematical approach to effective analysis of unsteady-flow 
pipelines, and since, therefore, the vibration element is just a 
simulation example for the proposed methodology, we do not 
devote much attention to the vibration element itself. 

In the mathematical modeling, the coordinate x runs from 
the reservoir through a pipeline of cross-sectional area S. We 
regard the control valve at x l=  as an unsteady flow source. 
It supplies virtually no velocity fluctuation to the pipeline 
under the system pressure P until the time reaches 0, after 
which it gradually increases the velocity fluctuation until 

ct t= :  
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Generally, in fluid mechanics the pressure and the flow ve-

locity are independent variables, whereas in linear acoustics 
they are dependent. The plus sign of the velocity fluctuation in 
Eq. (1) corrects for the discrepancy between the two physical 
fields. 

The mechanical vibration element inserted into the pipeline 
has spring constant K, mass M, and cross-sectional area MS . 
Hereafter, we use the subscript M to represent the physical 
quantity of the vibration element. 

The junction where the pipeline encounters the reservoir ac-
tually includes an acoustic impedance varying with frequency 
[8]. But we ignore this, because the area ratio of the pipeline 
to the reservoir is negligibly small, resulting in a force-free 
boundary condition at that point. 

 
2.2 Governing equations 

The continuity and momentum equations for the one-
dimensional compressible fluid in the pipeline are [1, 2] 

 
2 0x x x

x
p u pc u
t x x

ρ∂ ∂ ∂⎡ ⎤+ + =⎢ ⎥∂ ∂ ∂⎣ ⎦
, (2) 
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Here, f and d are the Darcy-Weisbach friction factor and the 
pipe diameter, respectively. For simplicity, we use xp  and 

xu  instead of ( )xp t and ( )xu t . 
For most engineering applications where / 1xu c << , the 

convective terms /x xu p x∂ ∂  and /x xu u x∂ ∂  are very small 
compared with the other terms, and therefore are ignored. We 
also ignore the effect of the friction term | | / 2x xfu u d , in that 
the first oscillating peak is more dominant than the others 
where water hammer exists. Imposing these assumptions that 
ignore the convective terms braced by [ ] in Eqs. (1) and (2) 
yields the one-dimensional wave equation [9] 

 
2 2

2 2 2

( ) 1 ( )x xp t p t
t c x
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The Fourier transform of the pressure wave ( )xp t  yields 

the simple harmonic component as   
 

( ) ( ) i t
x xP p t e dtωω

∞

−∞
= ∫ . (5)  

 
Table 1 shows the several Fourier transform results pertinent 

to the present study and noted, accordingly, throughout this 
paper. 

Knowing all of the harmonic components, one can obtain the 
complete field by taking the IFT as 
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π
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Incorporating Eq. (6) into (4) bears the well-known Helmholtz 
equation for a one-dimensional field: 

 
2 2 2/ ( ) 0xx k P ω⎡ ⎤∂ ∂ + =⎣ ⎦ . (7)  

 
In addition, substituting Eq. (6) for (2) and (3) produces the 

acoustic pressure and velocity relationships for a single fre-
quency:  
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Fig. 1. Simple pipeline considered. 
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The 2nd-order differential equation in Eq. (7) yields the gen-
eral solution [10] 

 
( ) ikx ikx

xP Ae Beω −= + ,  (10)  

 
and ( )xcUρ ω can be obtained by Eqs. (8) and (9):  
 

( ) ikx ikx
xcU Ae Beρ ω −= − . (11)  

 
Considering the time harmonic to be i te ω , A and B are the 
coefficients for left-going and right-going pressure waves, 
respectively. In the special case in which there are no reflec-
tions from the boundaries, Eqs. (10) and (11) deliver the rela-
tionship of the acoustic pressure and velocity at section x as 
 

x xp cuρ=  for propagating wave.  (12)  

 
2.3 Graphical solution for simple pipeline 

If a pipeline end located at 0x =  has a rigid boundary con-
dition where ( ) 0xU ω = , one can find that A B=  from Eq. 
(11). This means that the rigid boundary makes in-phase re-
flections for pressure waves and out-of-phase reflections for 
velocity waves. By contrast, the force-free boundary condition 
makes out-of-phase reflections for pressure waves and in-
phase reflections for velocity waves. We should keep in mind 
that these physical laws for the simple boundaries explained at 

0x =  are applicable regardless of the location of the bounda-
ries. 

Given a pipeline with simple boundaries such as force-free 
or rigid boundaries, summation of the reflections from the 
boundaries provides a mathematically simple water hammer 
solution. This solution can be useful in effectively delivering 
physical meanings and in verifying computational results for 
more complex pipeline systems.  

We assume that the pipeline shown in Fig. 1 has a force-free 
boundary at 0x =  and a rigid boundary at x l= .   

The first pressure wave abbreviated as ①, which is gener-

ated from the flow source and is described mathematically in 
Eqs. (1) and (12), travels under system pressure P to the left 
and arrives at x when ( ) /t l x c= − , as shown in Fig. 2(a). The 
reflected wave abbreviated as ②, generated from the force-
free boundary at 0x = , runs out-of-phase with ① and arrives 
at x when ( ) /t l x c= + . The third wave from the rigid bound-
ary at x l= , expressed as ③ , is added at x when 

[2 ( )]/t l l x c= + − , and is in-phase with ②. In this mecha-
nism, the boundaries send pressure waves periodically into the 
pipeline, the infinite sum of which, at x, yields the real pres-
sure wave shown in Fig. 2(b). Examining the shape of this 
pressure wave, we can see that the pattern appears periodically.  

Generally, a pressure rise caused by water hammer is closely 
related to the valve-closing time ct  and the round-trip-time of 
the wave-front in the pipeline 2 /rt l c= . Fig. 3 plots pressure 
fluctuations at the flow source point for varying ct . We can 
see that when c rt t< , the pressure waves always have a peak 
level of cρ U . In the opposite case, in which c rt t≥ , the 
waves always hold peak levels below cρ U . A longer dura-
tion of the valve-closing time can mitigate the water-hammer 
effect in the pipeline, as Fig. 3 shows.  

 
2.4 Mathematical solution by proposed method without vi-

bration element 

First, we investigate pressure wave propagation for the sim-
ple case in which the pipeline end is under the force-free con-
dition introduced in the graphical solution. Imposing the 
boundary conditions in Eqs. (10) and (11), we can derive the 
transfer function between the flow source and the section x as  
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Table 1. Fourier transform pairs. 
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Fig. 2. Pressure wave variation at x varying with time. 
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Inserting the Fourier transform of lU  in Table 1 and rewrit-
ing the result yields 

 
1 ( 1)ci t

x x
c

P cU e F
t

ωρ= − , (14)  

 
where the function xF  appears for mathematical convenience 
as 
 

2

2 2 2

sinsin
( ) cos cos

x
c

x l
c

il i kxF
c kl kl

ω
ω ω

= = . (15)  

 
The direct IFT of Eq. (14) agrees well with the graphical result 
presented in the previous section. 

This mathematical process is straightforward and produces 
better results than input labor. However, since it does not con-
sider the system characteristics, many physical instructions 
that can be useful for pipeline design might be ignored during 
in the computational process. In this context, this paper I ntro-
duces partial fraction expansion of the transfer function as an 
intermediate process preliminary to derivation of the final 
time-domain solution. The partial fraction expansion that is 
widely found in system analysis within the mechanical and 
electrical control fields utilizes the system poles that represent 
resonances.  

We can easily determine that the n-th pole of Eq. (15) is 
0.5 (2 1) /n n c lω π= ± − . Decomposing xF  into its poles 

yields  
 

2 2 2
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where the amplification factor of the n-th pole is given as 
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Taking the IFT of xF , provided in Table 1, yields its time-

domain expression 
 

1

( ) 2 [ sin( ) 1]x n n
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ω
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Then, we can finally derive the time-domain solution of 
( )xp t  with Eq. (18) and the time delay Fourier transform of 
ci te ω  in Eq. (14) as 
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The partial fraction expansion of the transfer function per-

haps looks more complicated than the direct one. However, it 
provides the useful physical information that the time-domain 
response in a pipeline under water hammer is comprised of 
infinite acoustic modes multiplied by their amplification fac-
tors.  

 
2.5 Mathematical solution by proposed method for pipe with 

simple vibration element 

Based on the heretofore-derived results, we can extend the 
application of the proposed approach to a pipeline including a 
vibration element. A simple vibration element inserted into a 
pipeline section changes the dynamic characteristics of the 
simple pipeline: poles, mode shapes and amplification factors. 
Accordingly, we investigated the effect of inserting a vibration 
element by examining changes in the dynamic characteristics.  

For a simple description, it is convenient to introduce a spe-
cific acoustic impedance for a single frequency as 

 
x

x

P
cUρ

=z .  (20)  

 
With this notation, we obtain the specific acoustic imped-

ance for the vibration element as  
 

2 2 2( / ) ( )M
M

M M

K M M l c kli i
c S lS kl

ω ω
ρ ω ρ

− −= =z ,  (21)  

 
where the natural frequency of the vibration element can be 
written as /M K Mω = .  

Since most devices for mitigation of flow fluctuation are lo-
cated near the control valve, we ignore the clearance between 
the flow source and the vibration element. With this assump-
tion and Eq. (13), superposing the solutions of the flow source 
and the vibration element yields the fluid pressure at section x  

 
sin ( )
cosx l M

kxP i c U SU
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Fig. 3. Pressure fluctuations at x l=  varying with valve-closing time.
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where MU  is the particle velocity of the vibration element 
and S  designates the sectional area ratio of the vibration 
element to the pipeline as /MS S S= .  

By imposing the continuity condition of fluid pressure and 
Eq. (21), we can obtain the fluid pressure at section x for a 
single frequency in the form of Eq. (14), only changing xF  as 

 
2

2 2

sin
( ) [ cos sin ]

M
x

M

l i kxF
c kl kl iS kl

=
+

z
z

. (23)  

 
The poles occur when the denominator in Eq. (23) vanishes, 

resulting in 
 

2 2( ) ( / )tan MM kl l ckl
S kl

ω−= ,  (24)  

/( )MM M S lρ= ,  (25)  
 

where M  is the ratio of M to the effective pipeline inertia.  
Since there is no explicit solution to this transcendental 

equation, the graphical representation in Fig. 4 will aid under-
standing of the pole change as effected by the vibration ele-
ment. The intersections of the left-side and right-side functions 
in Eq. (24) hold the poles of the pipeline. From Eq. (24) and 
the graphical representations, we can easily determine that 
when the area ratio approaches 0 or the spring constant of the 
vibration element is so large that it can be assumed to be rigid, 
the vibration element cannot change the dynamic characteris-
tics of the simple pipeline. However, in the case that 
0 /Ml cω π< <  and an appropriate constant M  is applied to 
the pipeline, the first resonance disappears owing to the pres-
ence of the vibration element, as shown in Fig. 4.  

Differentiating the denominator of Eq. (23) with respect to 
kl  and substituting kl  for the n-th pole ( )nkl  yields the resi-
due  
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2
2 2

2 2 2 2 2
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where  
 

2
2( )MlD kl

c
ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 
2

2( )MlE kl
c

ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

. (27)  

 
Finally, the pressure wave ( )xp t  can be derived by substi-

tuting the changed poles and their amplification factors into 
Eq. (19). When M  goes to infinity or S  to zero, we find 
that the solid line in Fig. 5 represents a result without a vibra-
tion element and is identical to the graphical solution depicted 
in Fig. 3. 

Fig. 5 shows that an appropriate design of the vibration ele-
ment reduces the water-hammer pressure in the pipeline where 
the vibration element has the same values used in Fig. 4. 
3. Conclusions 

For effective analysis of water hammer occurring in a pipe-
line, we have proposed partial fraction expansion of the trans-
fer function as an intermediate process preliminary to the final 
time-domain solution. With this approach, in contrast to the 
conventional time-domain methods, we could employ a vibra-
tion element to simply analyze changes of the dynamic char-
acteristics of pipeline flow. Moreover, our simulated results 
yielded much physical information applicable to the design of 
innovative pipeline elements. 

One of the insights gained is that locating the resonance of 
the vibration element between the first and second resonances 
of the pipeline can reduce the abrupt rise of pressure incident 
on the occurrence of water hammer. It is expected that our 
method of partial fraction expansion will prove useful to re-
searchers analyzing unsteady flow in pipelines.  

 
Nomenclature------------------------------------------------------------------------ 

ρ    : Fluid density 
ω  : Angular frequency 
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Fig. 4. Graphical solution of Eq. (24) when 0.1M S= =  and /M l cω

0.8= . 
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Fig. 5. Comparison of results of pressure waves with and without vi-
bration element in pipe.  
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c   : Wave speed in fluid 
k  : Wave-number in fluid 

( )u t  : Unit-step function 
( ),x xu t U   : Particle velocity at time t  and at x  
( ),  x xU Uω  : Single frequency component of ( )xu t  

U  : Operating velocity in pipeline  
( ),  x xp t p  : Pressure wave at time t and at x  
( ),  x xP Pω  : Single frequency component of ( )xp t  

P  : Operating pressure in pipeline  
t  : Time variable 

ct   : Valve closing time 
rt   : Reciprocal of pipeline natural frequency  
z  : Specific acoustic impedance  
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